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RATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2l6k 

AXIAL-MOMENTUM THEORY FOR PROPELLERS 

IN COMPRESSIBLE FLOW1 

By Arthur W. Vogeley 

SUMMARY 

The axial-momentum theory for compressible flow has been developed 
as a first step in the formulation of a rational propeller theory for 
compressible flow.  The simple theory, although neglecting such important 
factors as rotation and profile drag, predicts flow conditions through 
a propeller that are significantly different from the conditions pre- 
dicted by the incompressible-flow theory.  These differences are greatest 
at high Mach numbers and high power loadings, but, because the magnitudes 
of the effects of these differences cannot yet be evaluated, the possi- 
bility of encountering important effects under less extreme conditions 
should not be overlooked. 

INTRODUCTION 

Conventional propeller theory is based on the assumption of an 
incompressible fluid.  Thus, far this theory, with the use of appropriate 
airfoil characteristics, has been adequate even to high-subsonic Mach 
numbers.  Several minor difficulties have been noted, however, which, 
although not destroying the present practical usefulness of the theory, 
indicate a basic inadequacy that may become important as propeller speeds 
and disk loadings continue to increase. 

The basic problem consists in the determination of the flow condi- 
tions resulting from the addition of energy to a compressible fluid. 
In studies of this problem that have been made with compressors and 
internal-flow systems (see, for example, references 1 and 2), either the 
entrance and exit flow conditions or the stream boundary conditions were 
known.  These conditions are unknown in the case of the propeller so 
that these related analyses cannot be applied directly.  (Compressor 
research may become more useful in the future after the general flow 
pattern has been established and when the details of the flow through 
the disk are being studied.)  Although several attempts have been made 
to develop a propeller theory for compressible flow (references 3 and k, 

Corrected version issued to supersede Aug. 1950 version. 
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for example), they have, in general, been limited by the use of first- 
order approximations, which are of decreasing applicability as the Mach 
number approaches unity. 

The purpose of this paper is to develop the simple axial-momentum 
theory for a compressible fluid in order to provide a starting point for 
the development of a satisfactory propeller theory. Use is made of the 
familiar compressible-flow relationships as given in many standard 
references, an example is calculated, and a discussion of the signifi- 
cant features is presented. Finally, an attempt is made to predict some 
of the phenomena which might be expected in an actual propeller. 

SYMBOLS 

a speed of sound in air 

A slipstream cross-sectional area 

H total pressure 

m mass flow (pAV) 

M Mach number 

p static pressure 

P total power 

T thrust 

V slipstream velocity 

7 ratio of specific heats (assumed equal to 1.4) 

p air density 

Subscripts: 

0 far ahead of propeller disk 

1 immediately ahead of disk 

2 Immediately behind disk 

3 far behind disk (final wake) 
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DEVELOPMENT OF THEORY 

Assumptions 

The assumption is made that the propeller is an actuator disk of 
zero thickness so that the slipstream area is continuous through the 
disk. Energy is added to the slipstream instantaneously and evenly over 
the disk area. Rotational losses are neglected. 

In setting up the analysis the flow pattern given in figure 1 was 
assumed. The locations of the stations 0 to 3 were chosen as follows: 

Station Location 

0 

1 

2 

3 

Far ahead of propeller disk 
(free stream) 

Immediately ahead of disk 

Immediately behind disk 

In the final wake where the 
flow has expanded back to 
free-stream static pressure 
(i.e., p3 = p0) 

Fundamental Relations 

From the law of conservation of mass, 

PoA0V0 = P^V-L = P2A2V2 = P3A3V3 (1) 

and since, by assumption, Aj = A^, 

PlVl = P2V2 (2) 
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Thrust is equal to the sum of the change in momentum plus any pres- 
sure force. When thrust is measured between stations 0 and 3> where 
P3 = PQ> no pressure force exists and 

T = PoVo(v3 " vo) (3) 

"but across the propeller disk a pressure difference exists and the 
expression for thrust becomes 

T = PlAlVl(V2 - Vl) + A1(pg - Pl) w 

Bernoulli's form of the energy equation states that 

H = p 1 + 7-1 PT 
2/ 

2L 
2X7-1 

(5) 

and, because no energy change occurs in the stream except across the 
propeller disk, 

H0 - Hx 

HQ — Ho 
(6) 

The value of HQ is, of course, determined by the free-stream 

conditions. On the other hand, Ho depends on the energy added to the 

air and may be evaluated from considerations of the general energy equa- 
tion, where 

7  p0 ^ V0   P    7  p3 V, 
+ — = 

7 - 1 P0   2 m  7 - 1 P 3 

This equation may be rearranged to read 

-§-te2-V)Th <*,!-£) 
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where the term 

m(Vo
2 - vn

2) (7) 

may be recognized from the incompressible momentum theory as a measure 
of the power used in producing thrust and induced losses, and the term 

11 (8) 
0 p 

is an additional term arising from the'occurrence of additional losses 
such as profile drag. This additional term is a measure of the increase 
in entropy in the final wake.  In the general case when losses occur to 
make p-^ differ from PQ the flow process is nonisentropic. When pn 

and pQ are assumed equal, the process becomes isentropic. 

A restriction is imposed in the analysis whenever the Mach number 
ahead of the propeller reaches 1.0. Presumably, because signals are 
transmitted at the speed of sound, the Mach number ahead of the disk 
can never exceed 1.0 if the free-stream Mach number is less than 1.0. 
Of course, if the free-stream Mach number is equal to or greater than 
1.0, the Mach number in the slipstream ahead of the disk is everywhere 
equal to the free-stream value. 

The speed of sound at any point, used to calculate the Mach number, 
is obtained from the equation 

a2 = ^ (9) 
P 

Finally, the equation 

P? 
= Constant (10) 

is used where isentropic conditions exist. 



NACA TN 216U 

METHODS OF OBTAINING SOLUTIONS 

In general, the flow conditions are desired for certain values of 
altitude, forward speed, power, and propeller-disk area. A first 
approximation of AQ, only a few percent greater than the propeller 

area, may be used to calculate the mass flow PQAQVQ, and conditions in 

the final wake may then he determined from expressions (7) and (8). 
Conditions at stations 1 and 2 may be found from conditions at stations 0 
and 3 by means of compressible-flow relationships. From equation (V) the 
thrust may be calculated.  If this value does not agree with the value 
given by equation (3), further calculations with different assumed values 
of AQ are necessary. 

1*. 

The mechanics of obtaining a solution may be varied considerably. 
The method presented is laborious but yields results to any degree of 
accuracy desired. 

RESULTS 

Because of the difficulty of presenting in general terms the results 
of the development of the momentum theory for compressible flow, the 
solution of a typical problem is presented here. 

Solutions were obtained for an ideal propeller (P-D  =  Po) f°r which 

the flow process is isentropic.  A flight Mach number of 0.7 and an 
altitude of ^4-0,000 feet were assumed. Power loading was varied from 0 
to approximately 77»5 horsepower per square foot of disk area, the value 
at which sonic velocity into the disk was reached.  (After sonic velocity 
is reached the process becomes nonisentropic. Solutions in this range 
are not presented because the physical significance of the results is 
not clear at this time.) Results of the calculations are presented in 
figure 2 with corresponding results of calculations for an incompressible 
fluid obtained by using the familiar axial-momentum equations. 

Figure 2 shows that significant differences in the flow conditions 
through the propeller exist between compressible and incompressible flow. 
In incompressible flow, a discontinuity occurs only in the pressure 
through the disk.  In compressible flow, however, discontinuities appear 
also in the density, velocity, and Mach number.  These changes do not, 
of course, occur instantaneously in an actual case but take place within 
the propeller blading.  In the first approximation, therefore, conditions 
noted as occurring at station 1 may be considered as existing in the 
vicinity of the leading edge of the blade and conditions at station 2, 
near the trailing edge. 
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Figure 2 shows that the pressure jump through the disk for compres- 
sible flow is approximately twice (at MQ = 0.7) the jump for incompres- 
sible flow. 

Other interesting results for this Mach number are that the 
velocity Vj immediately ahead of the disk is greater than the final 

slipstream velocity and that V2 is less than free-stream velocity. 

These results are quite different from those obtained from incompressible 
theory. 

The variations in Mach number through the propeller disk follow, of 
course, the variation in velocity.  It is interesting to note that the 
Mach number immediately behind the disk M2 is always less than the 

free-stream Mach number. 

For compressible flow, all the variables presented in figure 2 are 
seen to vary smoothly with power loading until the Mach number Mj_ 

reaches unity. From this point on, conditions ahead of the disk would 
remain fixed. Conditions behind the disk would depend upon the flow 
process chosen. 

Calculations were made of the efficiency for both compressible and 
incompressible flow. No charts of efficiency are presented, because 
within the accuracy of the calculations no difference was found. 

IMPLICATIONS OF THEORY 

The simple axial-momentum theory is one-dimensional, whereas the 
flow about an actual propeller is three-dimensional. Therefore, from 
the axial-momentum theory, the determination of the effects of compres- 
sibility on propeller operation is difficult. For a thorough evaluation, 
a more complete analysis considering such effects as rotational energy, 
profile drag, and finite number of blades should be made. The actuator 
disk may be likened to a propeller with a large number of blades operating 
in dual rotation (in order to remove rotation in the slipstream), and in 
this case simple theory should, to the first order at least, predict the 
general flow phenomena and indicate some of the effects of compressibility 
that might be experienced. 

Variations in Pressure 

For compressible flow the pressure variations through the propeller 
disk are similar to, but larger than, the variations in incompressible 
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flow.  These larger pressure variations will tend to increase the mutual 
interference effects between propeller and body over the amount usually- 
expected.  The effects on body critical speeds and boundary-layer action 
may become significant. 

The generally unfavorable pressure rise through the disk, being 
greater in compressible flow, would tend to produce a greater adverse 
effect on the blade boundary layer. 

Variations in Velocity 

As the air passes through the propeller disk it decreases in veloc- 
ity, as shown by figure 2. This result has also been noted in refer- 
ence 1 for the analogous case of the compressor. Reference 1 discusses 
in detail the effects of the change in velocity and shows that the effect 
of compressibility is to reduce the turning angle required for a given 
pressure rise (or thrust, in the case of a propeller).  In effect, then, 
a propeller designed according to conventional incompressible theory may 
have excessive camber for compressible flow. 

The variation in velocity through the propeller raises the problem 
of defining a velocity upon which to base section dynamic pressure, blade 
angle, and direction of force vectors.  Ultimately, of course, all losses 
(whether induced or otherwise) "must be resolved into forces acting on the 
blade sections. For the incompressible case the solution is simple since 
the velocity through the disk is constant, and the increase in axial 
velocity causes a tilt in the section force vectors, which corresponds 
quite logically to the induced losses.  For the compressible case, how- 
ever, the problem is more complicated and the determination of a repre- 
sentative velocity through the disk is difficult.  Neither the inflow 
velocity (VT) nor the mean velocity (average of V-^ and V2) seems 

wholly satisfactory for this purpose. 

Variations in Mach Number 

At MQ = 0.7, a wing or body should be favorably affected if placed 

immediately behind a propeller because of the lower axial Mach number. 
As shown by figure 2, the Mach number behind the disk is always less than 
free-stream Mach number. Conversely, a body ahead of the disk should be 
adversely affected (except for the favorable pressure gradient), since 
it would be operating where the Mach number is always greater than free 
stream and, in the case presented, is even higher than in the ultimate 
slipstream.  The influence of the propeller is significant, however, for 
only a relatively short distance ahead of and behind the disk. A body 
would have to be placed rather close (less than 1 propeller diameter) 
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behind the disk to experience the reduced Mach number; otherwise it would 
operate in the higher Mach number of the final propeller wake. The vari- 
ation in axial Mach number may make a tractor configuration preferable 
to a pusher installation, other things being equal. 

CONCLUDING REMARKS 

The axial-momentum theory for compressible flow predicts flow condi- 
tions through a propeller significantly different from the conditions 
predicted by the incompressible-flow theory. These differences are 
greatest at high Mach numbers and high power loadings, but, because the 
magnitudes of the effects of these differences cannot be evaluated, the 
possibility of encountering important effects under less extreme condi- 
tions should not be overlooked. 

Such important parameters as rotation, profile drag, and number of 
blades should be investigated. These parameters may either amplify or 
counteract the effects anticipated from simple considerations. Tests 
designed to investigate propeller operation along the lines indicated 
by this compressible-flow theory would be valuable. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., April 26, 1951 
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Figure 2.- Axial-flow conditions for an ideal propeller at a flight Mach 
number of 0.7 and an altitude of 40,000 feet. 
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